Seizures and Epilepsy Management in Palliative Care

Besa Ziso

Consultant Neurologist

Diagnosis of Epilepsy

Epilepsy and Cancer

- The overall incidence of epilepsy in developed countries is about 50/100 000 persons/year
- Cumulative lifetime incidence of seizures is over 10%
- Cancer affects one in three people overall
- Cancer may influence the incidence, treatment and prognosis of seizures and epilepsy

Causes of Epilepsy

- Depends on age and geographical location
- Idiopathic 83% if <9 yrs
- Vascular disease 49% if >60 yrs
- Tumour 6% overall
 - <30 yrs 1%
 - 50-59 yrs 19%
 - >60 yrs 11%

(35% primary, 59% metastases, 6% unknown)

Causes of Seizures and Epilepsy

- Seizures found to occur in 13% of all patients with cancer
 - Half attributed to intracranial metastases and remainder to metabolic disturbances
- A considerable proportion of seizures among adults with systemic cancer arises due to intracranial metastases

Causes of Seizures and Epilepsy

• Low grade tumours are the most epileptogenic

Tumor Type	Seizure Incidence
DNET	Up to 100%
Oligodendroglioma*	89%–90%
Ganglioglioma*	80%–90%
Astrocytoma*	60%–75%
Meningioma	29%–60%
Glioblastoma multiforme**	29%–40%
Metastases	20%–35%
Leptomeningeal tumor	10%-15%
Primary CNS lymphoma	10%

Dysembryoplastic neuroepithelial tumour

Causes of Seizures and Epilepsy

- Seizures that occur in patients with cancer may have a variety of causes
 - Brain parenchymal and meningeal metastases
 - Administration of cytotoxic chemotherapy
 - Toxic-metabolic encephalopathy

Intracranial Metastases

- Brain metastases are less likely than primary brain tumours to cause seizures
 - Headaches, changes in behaviour and mental status are more common manifestations
 - Intracranial metastases often involve the posterior fossa
- Lung cancer (both non-small cell and small cell) is the most common cancer associated with metastases presenting with seizures
 - Breast
 - Malignant melanoma
 - Colon

Intracranial Metastases

- The time interval between diagnosis of the primary tumour and occurrence of seizures due to metastases depends on the propensity of the primary tumour to metastasise to the brain
- Central nervous system metastases can occur early or on presentation for lung cancers and malignant melanoma
 - However these may be delayed by as much as 2–3 years in breast cancers
- Seizures are usually a manifestation of parenchymal metastases but may also be a feature of leptomeningeal metastases

Drug Induced Seizures

- In patients receiving chemotherapy for cancer the possibility of drug-induced seizures should be considered
- Criteria for diagnosis of drug induced seizures include
 - Development of encephalopathy and seizures during or shortly after administration of the drug
 - Exclusion of other metabolic and structural factors and
 - Exclusion of seizures produced by concomitant drugs
- Most drug-induced seizures occur within hours or days of cancer drug administration
- Can occur after several days if the half life of the drug is prolonged as a result of impaired hepatic or renal clearance

Drug Induced Seizures

- Drugs which can cause seizures include
 - Cisplatin seizures reported in toxicity, PRES
 - Busulphan seizures and encephalopathy
 - Chlorambucil seizures in accidental overdoses
 - 5-Fluorouracil encephalopathy and seizures reported
 - Interferon alpha seizures in 1-4% reported
 - Cyclosporin associated with PRES

Reversible Posterior Encephalopathy Syndrome (PRES)

- Drugs
- Metabolic
- Uncontrolled hypertension
- Presentation
 - Headache
 - Seizures
 - Altered mental state and cortical visual loss
 - [an encephalitis presentation with normal CSF]
- Treatment of the inciting factor and control of seizures

Neurological Paraneoplastic Syndromes

- Limbic encephalitis
 - Characterised by focal seizures or status epilepticus with cognitive impairment
 - Seizures can be among the presenting manifestations or occur later during the course of the illness in 50% of cases
 - Rarely seizures may be the predominant manifestation
 - The symptoms may precede detection of the cancer by up to 3 years

Neurological Paraneoplastic Syndromes

- Imaging may show high-signal areas in the anteromesial temporal lobes and/or the basal frontal lobes
- Antibodies Anti-Hu (SCLC), Ma2 (testicular), CV2/CRMP5 (SCLC/thymoma), ampiphysin (Breast/SCLC), AMPAR (SLCL, breast, ovarian)

- Focal status epilepticus (Epilepsia partialis continua)
 - Focal lesions, involving the frontal motor cortex
 - Histopathological examination shows focal or multifocal perivascular lymphocytic infiltrates in the cortex and brain stem

Paraneoplastic limbic encephalitis

Cerebrovascular Complications

Venous Sinus Thrombosis

- Can present with seizures especially when occlusion leads to the development of cerebral parenchymal infarcts or haemorrhages
- May occur because of occlusion of the venous sinuses by leukaemic infiltrates
- Invasion of sinuses from dural metastases, solid tumours or administration of cancer drugs

Cerebrovascular Complications

Intracerebral haemorrhage

- Parenchymal brain haemorrhages
 - Seizures
 - Headaches
 - Focal neurological deficits
- Acute myeloid leukaemia (coagulation defects predispose to haemorrhage)
- Malignant melanoma and choriocarcinoma are associated with haemorrhagic cerebral metastases

CNS Infections

- Seizures can be the manifestation of infectious processes involving the parenchymal cortex
- Viral infections can involve the limbic and neocortex
 - Herpes simplex
 - Human herpes virus 6 and 7
 - Focal mass lesions due to aspergillosis, nocardiosis and toxoplasmosis
- Meningitic infections, cryptococcal meningitis and subcortical disorders such as progressive multifocal leucoencephalopathy are less likely to cause seizures

Cranial Irradiation

- Seizures may be among the presenting features of both acute radiation encephalopathy and delayed radiation necrosis
- Rarely they may be the dominant manifestation, and in such cases likely to be refractory to medical treatment
- Cranial irradiation may also lead to the development of cavernous haemangioma
 - Typically associated with intractable epilepsy due to repeated minor haemorrhages

Seizure vs Epilepsy

- A seizure is an episode of neuronal hyperexcitability causing neurological symptoms
- Epilepsy is recurrent unprovoked episodes of seizures

Classification of Epileptic Seizures

Focal Epilepsy

- Symptoms depend on the part of the brain where the seizure originates, but also the area that it spreads to
 - Temporal aura taste, smell, deja-vu
 - Occipital seizures visual aura
- Focal seizure
- Focal seizure with impaired awareness
- Secondary generalised tonic-clonic seizures
 - May occur with or without warning

Diagnosis

- Epilepsy is a clinical diagnosis
- Most important accurate history / eye-witness account
- MRI brain imaging required in adults with new onset seizures
- EEG can aid classification of seizure type

Investigations of seizures in patients with cancer

Investigations

- MRI +/- GAD
- Lumbar puncture
 - Cell count, glucose paired with serum, protein, MC&S and viral PCR
- Onconeuronal antibodies

Treatment of Epilepsy

- When to start treatment?
- First-line AED?
- Which AEDs?

Treatment

- Antiepileptic drugs (AEDs)
 - Hampered by side effects
 - Interactions with other drugs or anti-cancer agents
 - More than 30% of patients will be refractory to AED treatment during the course of their disease despite AED treatment
- Tumour-directed treatment
- Surgical management

MESS study (<u>Multicentre study of Early epilepsy and Single</u> <u>Seizures</u>)

- Children and adults in whom the clinician felt uncertain as to whether AEDs were appropriate
- Randomised to immediate or deferred treatment
- Approximately 1400 patients followed up for >5 years
- For people with single seizures and early epilepsy
 - Early AED treatment has no effect upon long term prognosis or QOL
 - Treatment decisions should based largely upon risk of recurrence

Seizure recurrence depending on risk group

- No benefit of early treatment for those at low risk
 - (patients with a single seizure and normal EEG, no neurological deficit)
- Those with multiple seizures +/- abnormal EEG +/- neurological deficit or abnormal imaging may benefit from early AED treatment

Treatments for Epilepsy

Up to 1990

- Barbiturates
- Phenytoin
- Carbamazepine
- Valproate
- Benzodiazepines

By 2019

- Vigabatrin
- Lamotrigine
- Gabapentin
- Topiramate
- Tiagabine
- Oxcarbazepine
- Levetiracetam

- Pregabalin
- Zonisamide
- Lacosamide
- Brivaracetam
- Perampanel
- Rufinamide
- Sulthiame

Principles of Treatment

- Monotherapy
- Cautious dosage escalation
- Titrate to maximally tolerated dose
- Alternative monotherapy
- Dual-therapy

First line Anti-epileptic Drug

- Traditional treatment choice (pre-2000)
- Focal epilepsy
 - CBZ
 - VPA less effective

SANAD (<u>Standard And New Antiepileptic</u> <u>D</u>rugs)

• Inclusion criteria

- Aged 5 or over
- Two or more unprovoked seizures
- Required treatment with antiepileptic drug monotherapy

SANAD – Focal epilepsy

- Lamotrigine is significantly less likely to fail than Carbamazepine, Gabapentin, or Topiramate
- Lamotrigine efficacy is similar to Carbamazepine but better tolerated
- Lamotrigine should be considered the first line AED for patients with focal onset seizures
- Lamotrigine
 - Slow titration
 - Allergic reaction (can be severe Steven-Johnsons)
 - Insomnia

Anti-epileptic drug options

- Levetiracetam
 - Rapid titration
 - Mood disturbance 1/10
- Time to first seizure 6 and 26 weeks
- Similar for Lamotrigine and Levetiracetam in spite of quicker titration with Levetiracetam

Newer AEDs - Advantages

- Efficacy similar
- Tolerability
 - Lamotrigine v Carbamazepine, Levetiracetam v Carbamazepine
- Long term tolerability
 - Phenytoin cosmetic, gum hypertrophy, neuropathy, ataxia
 - Phenytoin, Carbamazepine, Valproate osteoporosis
- Drug interactions
 - Older AEDs enzyme inducers (Phenytoin, Carbamazepine) or inhibitors (Valproate)
 - Multiple interactions with commonly used drugs (eg warfarin, OCP, digoxin, statins)
 - Newer AEDs no or very few interactions

Failed Monotherapy

Add-on AED

- Co-morbidities important
- Rational polypharmacy
- Individualised treatment
 - Obesity (Valproate v Topiramate)
 - Depression / anxiety (Topiramate / Levetiracetam / Zonisamide v older AEDs)
 - Migraine (Topiramate)
 - Other medical conditions (newer v older AEDs)

Status Epilepticus

- Most common cause is non-compliance with medications in known epileptics
- 25% of status epilepticus cases are non-epileptic
- Critical that decisions are made in a timely manner
- Delays increase the likelihood of refractory and super-refractory status epilepticus
- Consider other causes drugs inc. alcohol, metabolic, infection, encephalitis
- Always check blood glucose

Status Epilepticus: Management Give the usual AEDs...

- The following AEDs have liquid or dispersible formulations
 - Carbamazepine (can also be given rectally see BNF for guidance)
 - Clobazam
 - Lacosamide
 - Lamotrigine
 - Levetiracetam
 - Phenobarbitone
 - Phenytoin
 - Primidone
 - Topiramate (sprinkle capsules the internal powder can be dissolved in water)
 - Valproate*
 - Zonisamide (capsules the internal powder can be dissolved in water)

Status Epilepticus: Management Give the usual AEDs...

- The following AEDs can be given intravenously if there is no oral route
 - Phenytoin
 - Valproate
 - Levetiracetam
 - Lacosamide
 - Phenobarbitone

Early Status Epilepticus	Treatment
1st stage (0–10 minutes)	
 Secure airway and resuscitate 	 Lorazepam (intravenous) 0.1 mg/kg (usually a 4 mg bolus,
Administer oxygenAssess cardiorespiratory function	 Repeated once after 10–20 minutes

• Establish intravenous access

Early Status Epilepticus	Treatment	
2nd stage (0–30 minutes)		
 Institute regular monitoring Consider the possibility of 	Give usual AED medication if already on treatment	
non-epileptic status	• Administer glucose (50 ml of 50% solution) and/or intravenous thiamine	
Emergency AED therapy	(250 mg) as high potency intravenous	
Emergency investigations	 Pabrinex if any suggestion of alcohol abuse or impaired nutrition 	

• Treat acidosis if severe

Established Status	Treatment
3rd stage (0–60 minutes)	
 Establish aetiology ITU Pressor therapy when appropriate 	 Phenytoin infusion at a dose of 20 mg/kg at a rate of 50 mg/minute Or fosphenytoin infusion at a dose of 15–20 mg phenytoin equivalents (PE)/kg at a rate of 50–100 mg PE/minute
	 Or phenobarbital bolus of 10–15 mg/kg at a rate of 100 mg/minute

Established Status	Treatment
3rd stage (0–60 minutes)	
 Establish aetiology 	 Or levetiracetam 30mg/kg (max 3000 mg)
 ITU Pressor therapy when appropriate 	 Or sodium valproate 30mg/kg (max 3000 mg) Contraindicated in women of childbearing age Severe liver failure or mitochondrial disorder

- Levetiracetam vs phenytoin in the management of status epilepticus
- Prospective randomised study
- IV levetiracetam had comparable efficacy to phenytoin at achieving seizure control
- Valproate, non inferiority to phenytoin

Refractory status

Treatment

4th stage (30-90 minutes)

- Transfer to intensive care
- GA:
- Establish intensive care and EEG monitoring
- Initiate intracranial pressure monitoring where appropriate
- Initiate long-term, maintenance AED therapy

- Thiopental sodium (3–5 mg/kg bolus, then 3–5 mg/kg/hour) titrated to effect; after 2–3 days infusion rate needs reduction as fat stores are saturated
- Midazolam (0.1–0.2 mg/kg bolus, then 0.05–0.5 mg/kg/hour) titrated to effect
- Propofol (1–2 mg/kg bolus, then 2–10 mg/kg/hour) titrated to effect
- Anaesthetic continued for 12–24 hours after the last clinical or electrographic seizure, then dose tapered

Questions?